Flexible Multicarrier PHY Design for Cognitive Radio in White Space

Presented by: Michael Fitch
WP4: PHY architecture

R. Datta, M. Gautier, V. Berg, Y. Futatsugi, M. Ariyoshi, M. Schühler,
Zs. Kollár, P. Horváth, D. Noguet

QMCC’11 WInnCom

'The research leading to these results was derived from the European Community’s Seventh Framework Programme (FP7) under Grant Agreement number 248454 (QoSMOS)'.

Technical University of Dresden, CEI, LETI, NEC, Fraunhofer, MI"EGYETEM 1782
Content

- Motivation
- Technical Highlights
 - FBMC
 - IA – PFT
 - GFDM
 - Reconfigurable RF
- Conclusion
Motivation for looking Beyond OFDM

FBMC, GFDM and IA-PFT

- Fragmented White Space
- Flexible MC approach
- Extremely low out-of-band radiation
- Digital Implementation

- Multi-branch filter bank approach
- Adjustable out-of-band radiation
- Lesser CP compared to OFDM
- Simple Equalization → Performance is as good as OFDM
- Reconfigurable RF front – end for flexibility of the architecture
Interference Avoidance Transmission (IA-PFT)

- An OFDM-based-transmitter capable of suppressing out-of-band emission for opportunistic spectrum access in White Space
- Parallel concatenation of partitioned frequency-domain (Cancellation Carriers) and time-domain (windowing) processing
- 6-12 dB of suppression gain in power spectral density

IA-PFT transmitter

IA-PFT: Interference Avoidance transmission by Partitioned Frequency- and Time-domain processing
IA-PFT: BLER and PAPR Performance

- IA-PFT achieves almost the same BLER as those of conventional CC and TW schemes in multipath fading channels
- Negligible level of increase in PAPR confirmed

Power spectrum density of IA-PFT with variable Q

PAPR performance (QPSK)
Filter Bank Multi Carrier System

• FBMC / OQAM OFDM is being considered
• Motivations for FBMC have been presented
 • Frequency transition bands are sharper
 • Benefits in terms of spectral efficiency have been measured
 • Larger complexity of implementation
• FBMC DSP Architecture

Structure of the FBMC modulation and demodulation
Channel equalization in FBMC

- For small delay spread: channel equalization using MMSE channel equalization
- Larger delays introduce error floor in the BER
- Novel iterative equalization scheme for FBMC to achieve better performance

Power spectral density comparison in IEEE 802.11a/g

FBMC and OFDM MMSE, AWGN and multipath channels

<table>
<thead>
<tr>
<th>Standard</th>
<th>Spectral Efficiency Gain relative to OFDM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency Domain</td>
</tr>
<tr>
<td>DVB-T</td>
<td>10 %</td>
</tr>
<tr>
<td>IEEE 802.11a/g</td>
<td>3.8 %</td>
</tr>
</tbody>
</table>
Generalized Frequency Division Multiplexing

Symbol mapping

Transmit filter

Digital subcarrier upconversion

Add cyclic prefix

Binary data

$\tilde{g}_f[n-iN]$ $d[K-1,i]$ \ldots $d[0,i]$ $\tilde{g}_f[n-iN]$ $x_{K-1}[n]$ $x[n]$ $n[n]$ CP

Digital subcarrier down-conversion

Receive filter

Sampling

Detection

Remove cyclic prefix

Equalization

Binary data

$\tilde{g}_f[n]$ \ldots $\tilde{y}_{K-1}[n]$ \ldots $\tilde{y}_0[n]$ $\tilde{g}_f[n]$ $\tilde{d}[K-1,i]$ $\tilde{d}[0,i]$ \ldots \ldots
Tail-biting CP

- In OFDM we have 1 CP for every OFDM sym Block
- In GFDM, we have for M-sym blocks, 1 CP
- If we have frequency selective Channel, the influence of CP on $\frac{E_B}{N_0}$

$10 \log_{10} \left(\frac{T_{\text{data}} + T_{\text{CP}}}{T_{\text{data}}} \right)$
GFDM performance
Flexible RF Transceiver Front-End

Main objectives:
• Flexible spectrum exploitation
• Supporting spectrum aggregation

Architecture of the multi-band RF receiver front-end

Frequency selection and conversion for spectrum aggregation
Conclusion

- State of the art architectures have been studied.
- Parameter and system requirements have been researched.
- A flexible PHY design is being researched; with several options identified.
- Simulations going on in FBMC, GFDM, IA-PFT etc. etc.
- Performance of these PHY techniques are being studied and simulated.
- Reconfigurable RF front-end is being researched.
Thank You!!